3 research outputs found

    On the Analysis of the Contact Conditions in Temporomandibular Joint Prostheses

    Get PDF
    Temporomandibular joint replacement (TMJR) is a complex surgical procedure in which the artificial joints available must assure the anatomical reconstruction and guarantee a good range of the natural temporomandibular joint (TMJ) movements. With this aim, different types of TMJ prostheses, including the stock prosthetic system and custom-made prostheses, are being currently implanted. Although temporomandibular joint replacements (TMJRs) are expected to accomplish their function during a number of years, they might actually fail and need to be replaced. This paper analyzes different design factors affecting the contact stress distributions within the TMJ prosthesis interface, which are consequently involved in their deterioration and final failure of the prosthetic device. With this purpose, a numerical model based on finite elements has been carried out in order to evaluate the stress states attained in different prosthesis configurations corresponding to general types of TMJ prostheses. On the other hand, the actual degradation of resected implants has been evaluated via optical microscopy. The linkage between the numerical simulations performed and experimental evidence allowed the authors to establish the different wear and damage mechanisms involved in the failure of stock TMJ prostheses. Indeed, the results obtained show that the contact stresses at the interface between the mandible and the glenoid fossa components play a key role in the failure process of the TMJR devices

    Recent Approaches for the Manufacturing of Polymeric Cranial Prostheses by Incremental Sheet Forming

    Get PDF
    This paper presents recent research experiences developed with the aim of manufacturing cranial prostheses in polymeric sheet using Incremental Sheet Forming (ISF) technologies. With this purpose, different approaches have been carried out in Single-Point Incremental Forming (SPIF) and Two-Point Incremental Forming (TPIF) in order to produce customized cranial implants using different polymeric materials. In this context, this research work provides a methodology to design and manufacture polymer customized cranial prostheses using the ISF technologies starting from a patient’s computerized tomography (CT). The results demonstrate the potential of manufacturing polymeric cranial prostheses by ISF in terms of the high formability achievable and show the appropriate geometrical accuracy at affordable manufacturing costs provided by these processes.Ministerio de Economía y Competitividad DPI2015-64047-

    The Genus Hypothenemus, with Emphasis on H. hampei, the Coffee Berry Borer

    No full text
    corecore